Sensory experience inversely regulates feedforward and feedback excitation-inhibition ratio in rodent visual cortex
Abstract
Brief (2-3d) monocular deprivation (MD) during the critical period induces a profound loss of responsiveness within binocular (V1b) and monocular (V1m) regions of rodent primary visual cortex. This has largely been ascribed to long-term depression (LTD) at thalamocortical synapses, while a contribution from intracortical inhibition has been controversial. Here we used optogenetics to isolate and measure feedforward thalamocortical and feedback intracortical excitation-inhibition (E-I) ratios following brief MD. Despite depression at thalamocortical synapses, thalamocortical E-I ratio was unaffected in V1b and shifted toward excitation in V1m, indicating that thalamocortical excitation was not effectively reduced. In contrast, feedback intracortical E-I ratio was shifted toward inhibition in V1m, and a computational model demonstrated that these opposing shifts produced an overall suppression of layer 4 excitability. Thus, feedforward and feedback E-I ratios can be independently tuned by visual experience, and enhanced feedback inhibition is the primary driving force behind loss of visual responsiveness.
Data availability
All data generated or analyzed during this study are included in the manuscript and supporting files. Individual data points are plotted over bar graphs of means +/- SEM for each figure.
Article and author information
Author details
Funding
National Science Foundation (NSF10604)
- Nathaniel J Miska
National Institute of Neurological Disorders and Stroke (F31 NS089170)
- Nathaniel J Miska
National Eye Institute (R01 EY025613)
- Gina G Turrigiano
Max-Planck-Gesellschaft
- Julijana Gjorgjieva
National Institute of Neurological Disorders and Stroke (R37 NS092635)
- Gina G Turrigiano
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved Brandeis University institutional animal care and use committee (IACUC) protocols (#15005 and #18002). All surgery was performed under ketamine-xylazine-acepromazine anesthesia and included sufficient post-operative analgesia to minimize any animal suffering.
Copyright
© 2018, Miska et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 4,359
- views
-
- 680
- downloads
-
- 60
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Citations by DOI
-
- 60
- citations for umbrella DOI https://doi.org/10.7554/eLife.38846